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Three coupled Bose-Einstein condensates are investigated by the variational approach
in finite potentials with potential deviation, and the effects of the potential deviation on
dynamics of the three Bose-Einstein condensates are studied. The potential deviation
leads to the shift of the stationary state, resets the stability condition, causes the pop-
ulation imbalance competition, and changes the switching and self-trapping effects on
the Bose-Einstein condensates. The effect mechanism is demonstrated by performing a
coordinate of classical particles moving in an effective potential field. The critical be-
haviors are analyzed, and are confirmed by evolution of the atom population imbalance
ratio.

KEY WORDS: Coupled Bose-Einstein condensate; potential deviation; imbalance
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1. INTRODUCTION

The development of Bose–Einstein condensation is nowadays responsible
for many current perspectives on the potential applications, and these types of
experimental apparatus offer a unique possibility for studying dynamical regimes
at the frontier between the quantum and classical scenarios, for example, coherent
atomic lasers (Andrews et al., 1997), and the new chemistry of atomic-molecular
condensates (Donley et al., 2002). Subsequently, Bose–Einstein condensates are
seen as one of the main tools to investigate, verify and improve understanding
of many physical concepts and principles, for example, a long-term perspective
of such coherent matter-wave devices is quantum information processing on the
nanometer scale (Madison et al., 2000)
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Solitons are a central paradigm of nonlinear physics, and have become the
basis of transoceanic communication systems in fiber optics. A mean–field de-
scription for the macroscopic BEC wave-function is constructed using the Hartree–
Fock approximation and results in the Gross-Pitaevskii equation (GPE). It is well
known that the GPE support solitonic solutions (Fetter and Svidzinsky, 2001).
The dynamics of BECs in the presence of trap potential have recently become
a subject of growing interest, and have been studied in the framework of almost
all nonlinear evolution equations possessing soliton solutions (Aubry et al., 1996;
Raghavan and Agrawal 2000; Li et al. 2005, 2006; Raghavan et al., 1999).

The two-well model has been used to represent two coupled BECs in a
symmetric double-well potential, where the initial state with the atomic population
self-trapped in one well is shown to evolve in delocalized oscillations involving
both the wells. The dynamics of the asymmetric two-well model have been faced
within the mean-field formulation relatively to the π -phase oscillations as well
as the self-trapping effect (Smerzi et al., 1997). The dynamics of three coupled
BECs are investigated within a semi-classical scenario based on the standard
boson coherent states and show how a approach entails a simple formulation of
the dimeric regime therein studied. This allows to recognize the parameters that
govern the bifurcation mechanism causing self-trapping, and paves the way to the
construction of analytic solutions. The results of a numerical simulation show the
three-well dynamics has a cahotic behavior (Penna and Franzosi, 2002).

But with the classic theory (variational approach) of many-body BEC model
(three-well model), the switching and self-trapping effects on the three coupled
BECs in trap potentials and the dynamic mechanism have not been studied in detail
yet. Recently, a relevant interesting issue is to learn how to control the motion
of different types of condensates, including the coupled BECs. The question
then arises as to how one could affect or even guide their motion. The effect of
asymmetry of the laser intensity in turn involves deviation of amplitude (strength)
of the trapping potentials (Garnier et al., 2004). The control of the motion of the
coupled condensate solitons results in a train of self-coherent solitonic pulses.
Theoretical and numerical evidence suggests that such a pulsed atomic soliton
laser can be made in present experiments. One of the most important aspects of
the pulsed atomic lasers is that each BEC may be unstable due to the coupling
interaction among BECs. The interaction can be guided when the effects of external
factors (i.e. the potential deviation) are used.

In this paper, the population imbalance competition among the three coupled
BECs under deviation of the amplitude (strength) of the trap potential is investi-
gated, and the effects of the deviation on the dynamics of the three coupled BECs
are studied by means of the variational approach. Some novel results are obtained,
and they remind that the effects can be used to guide the motion of the three
coupled BECs.
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2. THE THEORETICAL FORMULA

Three coupled BECs in three traps can be described by the following three
coupled nonlinear Schrödinger equations (Li et al. 2005, 2006; Raghavan et al.,
1999; Smerzi et al., 1997)

j
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+ 1

2
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where ui(i = 1, 2, 3) is the condensate wave-function, K is the linear coupling
coefficient arising out of overlaps of the transverse parts of the wave-functions,
and Vi(i = 1, 2, 3) is the normalized confining trap potential in the longitudinal
direction (z direction).

The spatial dependence is weak compared with the temporal dependence, and
the three traps behave independently with the well-known ground state solution
in the form of Gaussian-shape (quasi-soliton). Then we use trial wave functions
below as the solutions of Eq. (1)
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where θ (t), ϕ, φ(t) and Ni (t) = ∫ ∞
−∞ |ui |2dz (i = 1, 2, 3) are the coupling an-

gle, the local phase, the phase difference and the number of atoms in each
trap. N = N1 + N2 + N3 is the total number of atoms in the three traps (a con-
served quantity). The wave-function ui(i = 1, 2, 3) retains the Gaussian shape
given by Eq. (2) in the evolution of the three BECs, but the coupling angle,
the phase difference and the number of atoms in each trap become functions of
time.
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It is convenient to decompose the external potential Vi(i = 1, 2, 3) as follows

V1 (z) = U (z) [1 + σ ]

V2 (z) = U (z) , (3)

V3 (z) = U (z) [1 − σ ]

where the additional potential σ accounts for the time-independent potential devi-
ation, which is assumed to be small and may take either positive or negative values.
U(z) is the conventional time-independent trapping potential, which is assumed to
be smooth and slowly varying.

Three coupled BECs in finite traps are considered, and the trap potential is
(Carr et al., 2001)

U (z) =
{

0 |z| ≤ 1
V0 |z| > 1

, (4)

where U(z) represents the square well potential, and V0 is the amplitude of the
potential. This potential gives analytic solutions, unlike harmonic traps, which in
one dimension do not give rise to analytic solutions. It has the advantage of having
a direct analog in the linear Schrödinger equation, for which the stationary states
have been worked out completely.

The averaged Lagrangian of Eq. (1) can be defined as usual variational
approach
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where a = ( 1
4 − 1
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The equations of motions for the coupling angle and the phase difference are
obtained from the averaged Lagrangian using dL(t)/dσ − d[dL(t)/d

.
σ ]/dt =
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0 (σ = θ, φ), and the following equations are obtained
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The atom population imbalance ratio between the two side traps is given by

�R (t) = R1 (t) − R2 (t) = N1 (t) − N3 (t)

N
= cos 2θ (t) , (7)

where R1 (t) = N1−N2
N

= 3 cos2 θ cos (θ − α) cos (θ + α) and R2 (t) = N3−N2
N

=
3 sin2 θ sin (θ − α) sin (θ + α) are the atom population transferring ratios from
the both end traps to the middle trap, and α = arg tg

√
2.

In order to study the atom population imbalance competition among the
three coupled BECs in the framework of Eq. (1), the equations of motions for
the population imbalance ratio and the phase difference are transformed from the
Eqs. (6) and (7) into
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where the time is rescaled as Kt → t . The dimensionless parameter 	 = N2/K is
relative interaction strength which represents the relative strength of nonlinear in-
teratom interaction in each trap concerning the linear inter-trap coupling resulting
from the proximity of the three traps.
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The dimensionless parameter δ = bV0Nσ/K is the normalized potential
deviation which represents the relative deviation strength among three trap
potentials.

The population imbalance ratio and the phase difference are canonically
conjugate. With the equations d�R/dt = ∂H/∂φ and dφ/dt = −∂H/∂�R, the
Hamiltonian of the three coupled BECs is given by

H = a	

[
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4
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]2
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32
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+
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]
cos φ. (9)

Equations (8) and (9) determine the competition dynamics of the three cou-
pled BECs.

3. THE SHIFT OF STATIONARY STATES

The stationary states can be obtained by setting the time derivatives in
Eq. (8) to zero, and the stationary states in absence of the potential deviation
are

�R0 = 0,

φ0 = 0, π ; (10)

and

�R0 = 1, φ0 = arccos(3a	/
√

2);
�R0 = −1, φ0 = arccos(−3a	/4

√
2).

(11)

The stability issue can be discussed by performing a standard linear stability
analysis for the stationary states. Considering the stationary states (10), their
stability issue can be discussed. We find that the in-phase and out-of- phase
stationary states are stable with respect to small perturbations when the relative
interaction strength 	 is smaller than 96

√
2/175

√
5a (about 6.926).

When the potential deviation is considered, from Eq. (8) the stationary states
(10) are replaced by
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√
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, (12)

and the stability condition is reset by [− 7a	
16 − 15a	�R0

8 + 6
25

√
2
5 ] > 0 for the

stationary state. We can see the potential deviation leads to the shift of the stationary
state, and changes the atom distribution of the stationary state in each trap. For
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example, the atom numbers of the stationary state (10) in three traps are N1 =
N3 = N

4 and N2 = N
2 , but the atom numbers of the stationary state (12) are changed

into (second-order reserved)
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Specially, the stability condition can be controlled by changing the potential
deviation. For example, the stability condition of the stationary state (12) can be
realized if

δ >
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Fig. 1. The condensate wave-function (u1) of the stable stationary state (12) versus
the longitudinal coordinate (z). The solid: δ = 0; The dotted: δ = 0.038.
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Fig. 2. The condensate wave-function (u2) of the stable stationary state (12) versus
the longitudinal coordinate (z). The solid: δ = 0; The dotted: δ = 0.038.

Figures 1–3 show the condensate wave-functions of the stable stationary state
(12) versus the longitudinal coordinate (z coordinate) for without and with potential
deviation. The selected system parameters are that amplitude of the potential is
V0 = 2, the total number of atoms is N = 3, the coupling coefficient is K = 1.0,
and the relative interaction strength is 	 = N2/K = 9. The potential deviations
are selected as σ = 0 and 0.04, which correspond to the normalized potential
deviation δ = 0, and 0.038. We can see the wave-functions can be controlled by
changing the potential deviation, and there is the obvious population competition
between the both end traps. These results indicate that the behaviors of the three
BECs would be sensitive to the change of the potential deviation, which could
be changed most easily by changing the deviations of the laser intensity which in
turn involves deviations of the trapping potentials.

4. EFFECTIVE POTENTIAL FIELD

It is helpful for us to demonstrate the effect mechanism to analyze the dy-
namical atom population imbalance ratio �R(t) as if it were a coordinate of a
classical particle (�R -particle) moving in an effective potential field. The phase
difference φ(t) is eliminated from Eq. (9) using the conserved Hamiltonian, and
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Fig. 3. The condensate wave-function (u3) of the stable stationary state (12) versus
the longitudinal coordinate (z). The solid: δ = 0; The dotted: δ = 0.038.

the following equation of motion is obtained for the coupling angle R(t) alone

d�R (t)

dt
= F (�R) [1 − f (�R)]1/2 , (15)

where the normalized function F(�R) and the effective potential f(�R) are
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(16)

− 3a	
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(1 − �2R)3 − δ�R
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/F 2 (�R) ,

where H [R (0) , φ (0)] is the initial Hamiltonian.
We can find that d�R/dt = 0 gives �R = �R(0). The energy of the �R-

particle is normalized as 1, and the effective potential field to hinder R-particle
moving is the normalized effective potential f (�R). When the energy of �R-
particle is smaller than the effective potential f(�R) (namely, f (�R) ≥ 1), the
atom population imbalance ratio �R is constant as if the �R-particle is confined
because of its low energy. When the energy of the �R-particle is larger than the
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Fig. 4. The effective potential versus the atom population imbalance ratio with the
Hamiltonian of H [φ(0) = 0, �R(0) = −0.5]. The dashed: δ = −0.038; The solid:
δ = 0; The dotted: δ = 0.038.

effective potential f(�R) (namely, f (�R) < 1), the atom population imbalance
ratio �R varies as if the �R-particle has enough energy to cross over the obstruct
which hinders its moving. Figure 4 show the effective potential f (�R) versus the
atom population imbalance ratio �R for the different potential deviations. The se-
lected system parameters are the same as those in Fig. 1. The potential deviation is
selected as σ = −0.04, 0, and 0.04, which correspond to the normalized potential
deviation δ = −0.038, 0, and 0.038. The initial atom population imbalance ratio is
R(0) = −0.5, and the initial phase difference is φ(0) = 0. We can see the effective
potential f (R) is an approximately parabola function of one bottom. When there
is no potential deviation (δ = 0), the bottom is located at the atom population
imbalance ratio of �R = 0, and only the bottom is below the energy of the �R-
particle. As a result the moving of the �R-particle is confined in the range near
�R = 0. When there is the negative potential deviation (δ = −0.038), the bottom
shifts along �R > 0 and decreases, and motion of the �R-particle is free within
the large range. When there is the positive potential deviation (δ = −0.038), the
bottom shifts along �R < 0 and increases, and the effective potential changes in
substance compared with that with the negative potential deviation. The the �R-
particle moves within very small range near the shifted bottom. These features
illuminate that the stationary states are changed by the potential deviation, the
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Fig. 5. The effective potential versus the phase difference. The dashed: δ = −0.038;
The solid: δ = 0; The dotted: δ = 0.038.

atom numbers of the stationary state are redistributed and there is the population
imbalance competition among the three BECs.

Linearizing Eq. (8) in �R only, the Eq. (8) reduces to the very simple form

d2φ

dt2
= − 21a	

16

√
2

5
sin φ − 9a	�R0
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√
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This suggests a mechanical analogy in which particles of the spatial coordi-
nate φ move in the effective potential below

Veff (φ) = − 21a	
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Figure 2 shows the effective potential versus the phase difference. The system
parameters are selected as the same as those in Fig. 1. We see that the effective
potential Veff (φ) is a potential of a bottom around φ = 0, where the particles
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Fig. 6. The critical potential deviation versus the initial atom population imbalance
ratio for different relative interaction strengths. The solid: 	 = 4; The dashed:
	 = 9; The dotted: 	 = 16.

can oscillate. The property of the effective potential depends strictly on the trap
potential deviation. For example, there are two very shallow valleys apart from
φ = 0 in presence of the negative potential deviation (δ = −0.038) in the effective
potential, where the particles can oscillate in very large range. The two valleys
disappears and the trap potential become deep in absence of the potential devi-
ation (δ = 0), where the particles can free oscillate become small. The bottom
of potential becomes deep as the potential deviation becomes large. The particle
oscillates within very small range as the potential deviation (δ = 0.038) is large
enough, and the particles may be stabilized around φ = 0.

5. ATOM POPULATION IMBALANCE COMPETITION AMONG
THE THREE COUPLED BECS

The switching and self-trapping effects on the atom population imbalance are
like the pendulum bob swing in an oscillation manner. When the initial conditions
are selected, there are multiple eigen-functions of the GPE, and critical behavior
depends on system parameters and initial condition. The energy is H = 5a

32 	 +
2
√

2
5 cos φ corresponding to the state of �R = 0. The critical behavior of the

three BECs can be analyzed with the energy conservation constraint, and from
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Fig. 7. The atom population imbalance ratio versus the time with the relative interaction
strength of 	 = 9. The dashed: δ = −0.038; The solid: δ = 0; The dotted: δ = 0.038.

Eq. (9) we can see the state of �R = 0 are inaccessible at any time if

δ > δc =
{

2
√

2√
5

− 5a	

32
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√
2 [1 + �R (0)] [1 − �2R (0)]√

5 − 6�R (0) + 5�R2 (0)

−
√

2[1 − �R (0)][1 − �2R (0)]√
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{
1 − 3

4
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32
[1 − �2R (0)]3

}
/�R (0) . (19)

In Fig. 3, we plot the critical potential deviation versus the initial atom
population imbalance �R(0) by numerically solving Eq. (19) for different relative
interaction strengths. We find that the different initial conditions correspond to the
different critical normalized potential deviation, and these results show that the
dynamics of the three coupled BECs strictly depend on the system parameters, the
potential deviation and the initial condition.

The oscillation dynamics of the atom population imbalance ratio among the
three coupled BECs are shown in Fig. 4 by solving the Eqs. (7) and (8) with
a fourth order variable-step Runge-Kutta algorithm for the different normalized
potential deviations. The selected system parameters and the initial conditions
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are the same as those in Fig. 1. The normalized critical potential deviation is
δc = −0.018 by Eq. (19), and the stable condition of the stationary states (12)
is δ > 0.016 by Eq. (14) under the given system parameters. We can see the
atom population imbalance ratios vary depending on the normalized potential
deviation as time changes. For example, when there is the negative potential
deviation (the corresponding normalized potential deviation of δ = −0.038) in
the BEC system, the population imbalance ratios vary in a relatively large and
periodical fluctuation manner, and these features show that there are population
imbalance competition and switching effects on the three BECs. When there is no
the potential deviation (the corresponding normalized potential deviation of δ = 0)
in the BEC system, the atom population imbalance ratios vary in a relatively
small and periodical fluctuation manner, and there is the population imbalance
competition among the three BECs. The state of �R = 0 are in accessible because
the normalized critical potential deviation is smaller than zero, and the oscillation
of the atom population imbalance ratio is confined within the range of �R < 0.
In other hand, the stationary state (12) is accessible but unstable with respect
to small perturbations because the relative interaction strength (	 = 9) is large
than 96

√
2/175

√
5a (about 6.926). When there is the potential deviation whose

the normalized potential deviation is larger than the critical value (corresponding
normalized potential deviation of δ = 0.03792), there is self-trapping effect on
the three BECs. The atom population imbalance ratios damply oscillates around
a fixed value with small amplitudes, and finally is located at the value such as
�R = �R0 = 400

√
5δ

288
√

2−525
√

5a	
≈ −0.278, which is the atom population imbalance

ratio at the stationary state (12). Because the potential deviation is larger than
0.0164, the stationary solutions (12) are stable with respect to small perturbations.
These results demonstrate the population competition depends strictly on the
system parameters, the potential deviation and the initial condition.

6. CONCLUSION

The competition among the three coupled BECs are investigated by the vari-
ational approach in finite potentials with potential deviation, and the effects of the
potential deviation on the dynamics of the thee BECs are analyzed. The potential
deviation leads to the shift of the stationary state, resets the stability condition,
causes the population imbalance competition, and changes the switching and self-
trapping effects on the three coupled BECs. For example, the stationary state is
replaced, and the stable condition is changed due to the existence of the potential
deviation. The atom number of the stationary state in each trap is redistributed,
and can be controlled by changing the potential deviation. The trajectories with
the energy conservation constraint in the phase space formed by the atom popu-
lation imbalance ratio and the phase difference shows that there is the population
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imbalance competition among the three BECs, and the effect mechanism is demon-
strated by performing a coordinate of classical particles moving in an effective
potential field. The critical behaviors among the three BECs are analyzed with
the energy conservation constraint, and are confirmed by evolution of the atom
population imbalance ratio versus time. These results remind that the behaviors
of the three BECs would be sensitive to the change of the potential deviation, and
the effects can be used to control the motion of the three coupled BECs.
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